
J .  Fluid Mech. (1986), vol. 162, pp. 415-438 

Printed in Great Britain 
415 

On the fine structure of osmosis including three- 
dimensional pore entrance and exit behaviour 

By ZONG-YI YANT, SHELDON WEINBAUM 
Department of Mechanical Engineering, The City College of the City University of New York, 

New York, NY 10031 

AND ROBERT PFEFFER 
Department of Chemical Engineering, The City College of The City University of New York, 

New York. NY 10031 

(Received 29 January 1985 and in revised form 2 July 1985) 

This paper presents a detailed quantitative model of osmotic fine structure for both 
permeable and semi-permeable membranes in dilute bathing solutions. The analysis 
differs from all previous studies in that it treats for the first time, albeit in an 
approximate manner, the detailed three-dimensional hydrodynamic interaction of 
the particles in the entrance and exit regions and the coupling of the convective- 
diffusive effects in these regions with those in the interior of the pore. Reasonable 
interpolations between various asymptotic formulas are used to derive the tensorial 
components of the particle diffusivity and the slip between the fluid and particle 
phases as functions of position throughout the entire flow field. The solutions show 
that the entrance and exit regions in the case of permeable membranes can have a 
significant effect on the osmotic solvent flux q for small particles in short pores 
although changes in the overall reflection coefficient are small. This is due to the 
nonlinear sweeping effect of convection a t  the higher osmotic-flow rates. For 
semi-permeable membranes the predictions of the model support the hypothesis of 
Mauro (1957) and Ray (1960) that there is a region of near-discontinuity in pressure 
and concentration at the plane of the pore entrance and the sweeping effects of 
convection on the concentration profile are very minor for the dilute solutions studied 
herein. In  contrast, the solutions for the permeable membrane clearly show the 
existence of three-dimensional unstirred regions which extend two-to-three pore radii 
from the pore openings. These solutions form the substructure of the much thicker 
one-dimensional unstirred layer described by Dainty (1963) and Pedley et al. (1978). 
It is shown that when the porosity is low (such as in most biological membranes), 
the wall concentration in Pedley ' s  solution is the far-field concentration for the 
entrance/exit solutions presented herein. 

1. Introduction 
Osmotic phenomena are of great biological significance. Osmosis occurs across the 

plasmalemma membranes of all living cells and through the intercellular clefts of the 
epithelial and endothelial cell layers lining all the internal body organs such as 
the kidney tubules, blood capillaries, intestines, gall bladder and cornea. Other 
biological examples are the synthetic membranes in artificial organs and the water 
exchange in plant cells and tissues. 

t Current address: Institute of Mechanics, Chinese Academy of Sciences, Beijing, China. 
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Osmotic flows have classically been treated either from the standpoint of 

irreversible thermodynamics or using detailed microhydrodynamic theories. I n  the 
thermodynamic approach the solute flow J, and the total volume flux J, are related 
to the difference of hydrodynamic and osmotic pressures, Ap and An, across the 
membrane, by the Kedem & Katchalsky (1958) equations : 

J ,  = w A ~ + ( ~ - c T ) ~ J ~ ,  

where L, is the hydraulic permeability describing the viscous losses of the pure 
solvent in passing through the pore, cr is the reflection coefficient describing the 
hydrodynamic interaction of the solute particles with the pore walls including the 
entrance and the exit, o is the diffusive permeability and 6 is some average 
concentration for the membrane. For a semi-permeable membrane where the particle 
radius is larger than the pore radius, cr = 1 .  The osmotic pressure for a dilute solution 
is given by van’t Hoffs law (e.g. see Hsieh 1975): 

71 = ETC, 

where l? is the universal gas constant and T the absolute temperature. 
The Kedem-Katchalsky equations, while showing the equivalence of a transmem- 

brane pressure difference and osmotic concentration difference, tell nothing about the 
detailed structure of the p -  and C-profiles and thus whether the movement of the 
solvent is due to bulk flow or diffusion. Mauro (1957) and Ray (1960) have 
hypothesized that for a semi-permeable membrane there is a region of very steep 
concentration gradient a t  the entrance to the pore, of thickness about the same as 
the pore radius, and that the water in this region should diffuse much more rapidly 
than would occur because of a concentration gradient across the pores themselves. 
If this were the case the diffusional gradient due to the concentration difference at 
the entrance to  the pore would establish a passive bulk flow of the solvent through 
the pore in which the pressure drop along the pore length is just equal to the osmotic- 
pressure difference a t  the pore entrance. No detailed model has ever been developed 
to prove this hypothesis since this theory would require a detailed analysis of the 
hydrodynamic interaction of the particles with the entrance geometry of the pore and 
a solution for the three-dimensional Concentration field at the pore entrance. This 
same difficulty, of course, applies for permeable membranes, except that  one now 
must also account for the hydrodynamic interaction of the particles with the walls 
of the pore and the coupling of the three-dimensional entrance and exit concentration 
and pressure fields with the solutions for these fields in the pore interior. To simplify 
this problem for permeable membranes, all previous investigators have neglected the 
pore entrance and exit effects and have developed various microhydrodynamic 
theories in which idealized models of the particle motion within a single pore have 
been considered (Anderson & Malone 1974; Anderson & Quinn 1974; Levitt 1975; 
Ganatos et al. 1980; Anderson 1981). 

As Dainty (1963) and Pedley (1980, 1981) pointed out, near the plane of the 
membrane there is an ‘unstirred layer ’ in which the solute concentration adjusts from 
C ,  at the membrane plane to C,  in the bulk solution. Pedley BE Fischbarg (1978) have 
proposed a one-dimensional analysis for the unstirred layer adjacent to a semi- 
permeable membrane in which the layer thickness is taken as known from 
measurements. Their results show that, under some circumstances, the neglect of the 
unstirred layer may incur significant error in estimating the osmotic flow. However, 
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as will be shown in this paper, for a permeable membrane the concentration field near 
the entrance or exit of the pore exhibits a clearly three-dimensional behaviour with 
a fine-scale substructure where Pedley ’s one-dimensional model cannot be applied. 
The present paper will provide important new insights into this substructure and into 
its relationship to Pedley’s unstirred layer. 

The present paper is a major departure from the earlier microhydrodynamic 
analyses in that it attempts to treat in an approximate manner the spatially varying 
three-dimensional hydrodynamic interaction of a spherical particle with the entrance 
and exit geometry of the pore and the consequence of this interaction on the detailed 
pressure and concentration profiles and the osmotic flux. Although the authors have 
just obtained the first accurate numerical solutions for the various force and torque 
coefficients for the three-dimensional particlepore-entrance interaction (Y an et al. 
1985), these solutions were not available before the present study was completed. 
Plausible interpolations between various asymptotic approximations have to be 
employed herein as well as other simplifying assumptions for these coefficients. The 
validity of these assumptions has now been confirmed by the numerical solutions in 
Yan et al. (1985). The approximate solutions for the force and torque coefficients are 
then used to determine the velocity of a neutrally buoyant particle in the absence 
of diffusive fluxes as well as the diffusivity tensor of the solute particle. Finally, the 
solute conservation equation is solved throughout the entire flow by matching 
separate solutions for the entrance and exit regions and the pore interior. Results will 
be presented for a wide range of particle-to-pore-radii ratios, pore-length-to-diameter 
ratios and particle concentrations within the dilute range. The upper limit on solute 
volume fraction 9 has been arbitrarily chosen as 0.05. While this value of 4, at first 
glance, might seem large, since it entails a roughly 20 yo error in osmotic pressure for 
hard spheres and 13 yo error in the viscosity of the bulk solution, these errors are still 
an order of magnitude smaller than the entrance and exit effects for short pores and 
small particles. 

The mathematical formulation, numerical procedure and results are presented in 
$52, 3 and 4 respectively. 

2. Formulation 
We consider a membrane with a single circular pore of length 1 and radius R, 

(figure 1). The membrane separates two dilute solutions of different concentrations, 
C, and C-m. The solute particle’s radius a can be either smaller (for a permeable 
membrane, figure 1 a )  or larger (for a semi-permeable membrane, figure 1 b) than R,. 
The solution is assumed to be so dilute that the hydrodynamic interactions between 
the particles are negligible. The broken lines in figures 1 ( a )  and ( b )  define the limiting 
positions at which the particle centres can be closest to the wall. Between these lines 
and the wall are the exclusion layers where no solute is present. Far from the pore 
openings the fluid pressures on the two sides of the membrane are assumed to be the 
same, i.e. p, = p- , .  

2.1. The constitutive equation of binary diffusion 
As Brenner & Gaydos (1977) pointed out, in the presence of hydrodynamic interaction 
the diffusive flux should be measured with respect not to the mass average velocity, 
but with respect to the deterministic velocity W of a neutrally buoyant particle: 

(3) 
1 
C 

u= uo-o.-vc. 
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R 

. -  
r = - I  z = o  

(0) 

4 
R 

P-, c-, = =% P, ",@ 
R. ---------- ---- -- 'r-11 Semi-permeable membrane ' 

z = - l  z = o  

(b)  

FIQURE 1 .  Our models for the fine structure of osmosis: (a) the permeable 
membrane; ( b )  the semi-permeable membrane. 

To obtain the expressions for Uo and D, we consider the force and torque balance 
for each osmotic particle. The thermodynamic force due to the Brownian diffusion 
(Batchelor 1976) is set equal to the total hydrodynamic force and the net torque set 
equal to zero. Since the total hydrodynamic force can be viewed as the superposition 
of a pure translation U and a pure rotation sd in a quiescent fluid, plus the flow V 
through the pore past a stationary particle, this momentum balance in the limit of 
low Re can be written approximately as 

where N A  is Avogadro's number and the PR, Pd R ,  etc. are the hydrodynamic force 
and torque correction factors for each of the three motions mentioned above. 
The subscripts denote the direction of the force or torque and the superscripts the 
mode of motion including component direction. Equations (4a, b, c) involve two 
important simplifications. First, these equations neglect the fact that a translation 
in the R-direction can induce a force in the z-direction and vice versa. For motion near 
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an infinite plane wall these orthogonal forces vanish for a hard sphere: however, this 
is not true in the presence of a pore opening where the motion of particle generates 
a flux through the pore. Secondly, the torque correction factors T> and T?” are 
not independent. Both these simplifications have since been justified by the more 
rigorous numerical solutions in Yan et al. (1985). 

Solving (4c) for $2 and rewriting (4a, b) in vector form, we have 

where 
V and their components are given by 

and are friction tensors for the particle motion U and the fluid motion 

The relation between UO and V for a neutrally buoyant particle can be found 
by setting the thermodynamic force in (5)  equal to zero: 

A( U, = Ak2 A!;) - Aky) A g  . where 

The expressions for the diffusivity tensor are similarly obtained by solving the 
force-balance equation (5)  when V = Uo = 0 and comparing the results with the 
definition of D in (3) : 

where 
RT 

67cpaNA 
D ,  = 

is the diffusivity of a spherical solute particle in an unbounded medium. 

2.2. Solution for a permeable membrane 
From (3) the solute conservation equation is given by 

V.(CUO) = V*(D*VC).  (9 1 
For a permeable membrane as shown in figure 1 (a), (9 )  is solved separately for the 

regions inside and outside the pore. However, for the flow inside the pore, there is 
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at present no theory for determining the hydrodynamic coefficients that would 
appear in the expression for uDR or DRR. Fortunately, for most membranes of prac- 
tical interest the pore length 1 is much larger than the pore radius R, and, thus, we 
can reasonably use the one-dimensional approximation to equation (9 ) ,  with q and 
C as constants over the cross-section : 

where 

and is the average velocity of the solvent in the pore; 3, and FZo should be the 
hydrodynamic coefficients averaged over the pore cross-section but are approximated 
by their values at the centreline. q and D,, can be taken as constants throughout 
the pore interior. The solution to (10) which satisfies the unknown concentrations 
C(0) = Co and C( - I )  = C, at the entrance and exit planes is 

To find the relationship between the concentration and pressure profiles, we use 
the differential form of the Kedem-Katchalsky equation (1 b) : 

where A, is the local hydraulic permeability in place of the overall coefficient L,. With 
the porosity 7 of the membrane defined as the ratio of the pore cross-section to 
membrane area, the Poiseuille formula leads to 

The reflection coefficient inside a circular cylindrical pore, where the value of u is 
denoted by uo, has been given by Anderson & Adamski (1983) : 

where 

In terms of the volumetric flow rate, defined as 

q = KKR:,  

- dC 8pq 
dz dz RR: 
_ -  dP - u,RT---.  

(13) can be written as 

The integration of (17) gives 

The total pressure drop along the pore is 

8Pql p(-1)-p(0) = “oRqCl-co)+-. AR: 
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Outside the pore, in the entrance and exit regions, we shall solve the three- 
dimensional version of (9 )  for axisymmetric convection and diffusion : 

i a  ac ac -- 
R aR 

(20a) 

To find UO and D one must first evaluate all the force and torque coefficients in (6) 
for A(u) and A(v) as functions of particle position. The approximations for these 
coefficients are summarized in Q 2.4. The boundary conditions in the right half-space 
( z  > 0) (see figure 1 a )  are : 

C = C,, when (R2+z2)!+m and z > a ;  (20b) 

ac 
- = 0, when R = 0; ( 2 W  

ac ac 
zR aR a2 

aR 

CU, = C q -  D -- D,, - = 0, when z = a and R 2 R, 

or z = (a2-(R,-R)2)6and R,-a < R < R,; 

(204 

(204 C,,,+ = C,-,-, when z = 0 and R < R,-a; 

@,-,+ = (3z-o- , whenz = Oand R < R,-a. 

An equivalent set of boundary conditions apply in the left half-space ( z  < -1 ) .  The 
matching conditions for concentration gradient (dC/dz), ,- and (dC/dz), --z+ are 
evaluated from the concentration profile (12)  inside the pore: 

In ( 5 )  V is the solvent velocity. When the solution is dilute, it  should differ 
very little from that of a pure-solvent flow. The exact solution of Dagan, Weinbaum 
& Pfeffer ( 1 9 8 2 ~ )  shows that this velocity can be closely approximated by the 
Poiseuille profile inside the pore or Sampson’s solution outside the pore. In the right 
half-space Sampson’s solution can be written as (see Happel & Brenner 1973, p. 193) 

v,=-- 3q 6 (R, - R,) (--- R-R, R+R, 

8xR: R 1 R2 

where q is the volumetric flow rate of the solvent through the pore, 

and R, = (Z~+(R-R, )~) : ,  R, = ( z~+(R+R,)~) ! .  (21 4 
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To find the pressure variation, we apply the differential form of the Kedem- 
Katchalsky equations (1 a) and (1 b) along the centreline (R = 0). The differential form 
of ( l a )  is 

- ac 
a Z  

J, = W’(Z)RT-++~-CT(Z))CJ,, 

Here o ’ ( z )  and g ( z )  are the local diffusive hermeability and the local reflection 
coefficient respectively and C is the concentration that would exist for local 
thermodynamic equilibrium. This equation can be rewritten as 

(22b)  
- ac qcuz = w ’ ( z ) R T - + ( l - a ( z ) ) C r ] ~ .  aZ 

Substituting (6), ( 7 )  and (S), with the hydrodynamic coefficients given in $2.4,  into 
(3) and comparing this with (22b), we have 

Note that, when z is large, Fi/Pz+-l and thus a ( z ) + O .  The small discrepancies 
between the results given by (15) and (22c) at the pore opening are handled by 
interpolation. Using the Sampson velocity profile (21a)  and (21 b ) ,  we have 

and 

+tan-’ (i)] ( R  = 0, z > 0), (23) 

- ac 3 H  
0 az 2R: 

m 
p ,  -p(O) = s a(z) RT-dz--. 

Similarly, in the left half-space we have 

and 
- ac 3M -, 

p - ,  -p (  - 1 )  = a(z) R T -  dz+- 
-1 az 2Rg 

Combining (19), (24)  and (26) and using p ,  = p- , ,  we can derive an expression 
for the osmotic-flow rate : 

The three terms in the numerator describe the contribution to the total flux of the 
osmotic forces in the interior and entrance/exit regions, whereas the denominator 
denotes the hydrodynamic resistance to the solvent movement outside and inside the 
pore. 

2.3. Solution for a semi-permeable membrane 
For a semi-permeable membrane where R, < a (figure 1 b), we solve the axisymmetric 
continuity equation (20a) in the right half-space ( z  > 0) subject to the following 
boundary conditions : 

C = C, when (R2+z2)i+m and z > a;  (28a) 
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- 0 when R = 0; (28b) 
ac 

ac ac 
zR i3R a Z  

_-  
i3R 

CUz = C q - D  --Dzz- = 0 when z = a and R 2 R, 

or z = (a2-(Ro-R)2)t and R < R,. (28c) 

Because R, < a, the steric exclusion establishes an abrupt change in pressure as 
well as in concentration across the broken curve in figure i ( b ) .  Along the centreline 
(R = 0), we have 

~ ( z , + ) - E T C ( Z ~ )  = ~(2,) (R = 0), ( 2 9 4  

where z, = (a2-R;)t. (29b) 

To the left of z = z,, the concentration is identically zero and the pressure drop 
is due to Sampson’s solution alone: 

The pressure to the right of z = z, can be evaluated in a way similar to (23) .  Combining 
these results, we obtain 

p(z)-p(0)  = [ a(z)ET-dd,:+flTC(z~)-3tCP[~+tan-l  aC (:)I Za az xRi z2+R; 

( R  = 0, z > z,), (31) 

and - ac 3 H  Q) 

p,-p(O) =I a(z)RT-dz+RTC(zi)--. 
Za a Z  2Rg 

The analogue to (27)  is 
ETC(z,+)+r a ( z )  RT-dz - ac 

Za az 
81 

3+- 
xR0 

(33) 

2.4. Consideration of hydrodynamic interactions 

Inside the pore, the data for Pzo and F;, can be taken from Happel & Brenner (1973, 
p. 318) for small particles or from Leichtberg, Pfeffer & Weinbaum (1976) for large 
particles. 

Outside the pore, the spatially varying hydrodynamic data for the force and torque 
correction factors appearing in ( 6 )  were not available when this study was first 
undertaken. However, we do know their asymptotic behaviours for the important 
limiting cases. The values of Pz and F; for the axisymmetric flow when the sphere 
centre is located on the pore axis have been obtained by Dagan, Weinbaum & Pfeffer 
(1982b). When the sphere is far away from the pore opening, the pore effect becomes 
negligible so that the plane wall with a pore may conceptually be replaced by an 
infinite solid wall. The R-component of the flow past a fixed sphere near the plane 
of the pore wall is reasonably approximated by a linear shear flow past a sphere in 
the presence of an infinite wall. The coefficients for all the infinite-wall cases except 
F; have been obtained by Brenner and co-workers: Pz is given in Brenner (1961), 
li’$ and qR are found in Cox & Brenner (1967), PR, FdR, FR and 5 are presented 
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zla 
1 .0000 
1 .OO32 
1 .W50 
1.0453 
1.1276 
1.5431 
2.3524 
3.7622 

10.0677 
00 

Fk 
co 

-4.0223 
-3.7863 
-2.6475 
-2.1514 
- 1.5675 
- 1.3079 
-1.1738 
- 1.0591 
-1.ooOO 

P R  

00 

0.5133 
0.4558 
0.1840 
9.829 x lop2 
1.953 x 
3.523 x 
5.621 x 
1 . 1 7 0 ~  
0.000 

Fk 
1.7005 
1.6982 
1.6969 
1.6682 
1.6160 
1.4391 
1.2780 
1.1671 
1.0587 
1 .OoOo 

03 

-2.6793 
-2.5056 
- 1.6996 
- 1.3877 
- 1.0998 
- 1.0250 
- 1.0059 
- 1 .W03 
-1.oooO 

qR 
00 

0.3849 
0.3419 
0.1455 
7.372 x 
1.456 x 
2.642 x 
4.216 x lo-* 
8.774 x 10-s 
0.000 

TABLE 1. Part of the force and torque correction factors 

!ly 
0.9440 
0.9443 
0.9444 
0.9477 
0.9537 
0.9742 
0.9901 
0.9971 
0.9981 
1 .oooo 

, - s,Sphere 

P 

X 

Case (a) (0 d x i R,) Case (b) (x = R,) Case (c) (x > &) 

FIGURE 2. Three cases for the calculations of F", and F:. 

in Goldman, Cox & Brenner (1967). The coefficient F: is well approximated by the 
stagnation-point flow past a sphere in the presence of a large-but-finite disk (Dagan, 
Pfeffer & Weinbaum 1982), since the infinite-plane-wall solutions do not permit a 
finite flow normal to the plane of the membrane. 

One anticipates that the presence of the pore opening will have the greatest 
influence on F", and J'; since these motions involve a large flow through the pore 
opening. Significant departures of these coefficients from the infinite-wall cases can 
be expected and special treatment is required. In contrast, the rotation or translation 
of the sphere parallel to the wall induces a much smaller flow through the pore. These 
motions can, therefore, be reasonably approximated by an appropriate infinite-wall 
solution. In addition several of the coefficients are identically zero for the infinite 
plane wall and should be small compared with unity when the pore is present. In view 
of these observations we shall make the following assumptions : 

(i) = p b z  = T>z = 0; 
(ii) F'', ErrR, FL, 5, Pb" and T > R  are relatively insensitive to the radial position 

R and, thus, can be approximated by the results for a sphere near an infinite solid 
wall as summarized in table 1 ; 

(iii) Fz and Fi are interpolated using known solutions for the axisymmetric motion 
of a sphere near an orifice or disk (Dagan et al. 1982b; Dagan et al. 1982). The details 
of this interpolation are given in Yan (1985) and are summarized in figure 2. Three 
cases are identified in this figure, the projection S of the sphere centre lying (a)  inside, 
(b) on the edge and (c) outside the pore. In  case (a)  the local radius p from S to the 
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1.0 

0.5 

ZIRO 

0.50 
0.55 
0.75 
1 .OO 
2.00 
5.00 
co 

0.50 
0.55 
0.75 
1 .OO 
2.00 
5.00 
m 

11 n n n n n n 5.00 
- 

- 

l , . . . I . , , . I , . . .  

RIR, = 0 

1.3688 
1.3777 
1.3882 
1.3919 
1.3019 
1.1240 
1 .m 

1.1646 
1.1797 
1.2121 
1.2544 
1.2693 
1.1187 
1 .om0 

0.25 0.50 0.75 1.00 1.50 2.00 

-F", 
1.4335 1.6495 2.7967 co a3 co 
1.4349 1.6271 2.4097 6.7243 10.0157 10.6767 
1.4310 1.5628 1.8157 2.3584 2.9414 3.0703 
1.4159 1.4949 1.5986 1.7609 2.0023 2.0686 
1.2956 1.3008 1.3064 1.3153 1.3478 1.3662 
1.1229 1.1226 1.1225 1.1225 1.1180 1.1205 
1.oooo l.m l.m 1.oooo l.m 1.oooo 

1.1727 1.2118 1.3881 3.0294 3.5751 3.6749 
1.1926 1.2409 1.4740 2.5227 3.1772 3.3206 
1.2333 1.3078 1.6102 1.9860 2.3649 2.4648 
1.2789 1.3570 1.5055 1.6773 1.9052 1.9735 
1.2652 1.2733 1.2814 1.3159 1.3649 1.3871 
1.1176 1.1173 1.1171 1.1242 1.1240 1.1275 
1.oooo 1.oooo 1.oooo 1.oooo 1.0000 l.m 

TABLE 2. Typical values of fi  and e for a" = 0.5. 

e 

5.00 

00 

11.3378 
3.1838 
2.1163 
1.3787 
1.1261 
1 .m 

3.7712 
3.4327 
2.5368 
2.0226 
1.4056 
1.1345 
1 .m 

00 

00 

11.4592 
3.2054 
2.1255 
1.3802 
1.1262 
1 .m 

3.7900 
3.4562 
2.5511 
2.0315 
1.4080 
1.1350 
1 .m 

0.5 

2.0 t- / ,0.75 o 
0 

pore edge varies with angle g5. The axisymmetric values of F, and Fi for a sphere 
of radius a near an orifice of radius p are averaged over g5 and these average values 
are taken as our approximation. In cases (b) and ( c ) ,  for some ranges of g5 the sphere 
centre sees an infinite plane or a disk of finite size rather than a pore. Then the 
appropriate known solutions are used in the averaging process. 
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- 

- 

I , , ,  , I  I I , .  I I I I t  

F: 

2.5 d = 0.5 

FIGURE 4. Typical values of FS for a /R ,  = 0.5. Symbols as in figure 3. 

Typical values of Pz and F: as functions of particle position for d = 0.5 are given 
in table 2 and figures 3 and 4. Also shown in the figures are the recent numerical 
solutions of Yan et al. (1985). The reasonable agreement at virtually all locations 
confirms the plausibility of the interpolations used. Tables for all the force and torque 
coefficients using the foregoing approximations are given in Yan (1985). The 
numerical solution for the three-dimcmsional pore-entrance geometry in Y an et al. 
(1985) shows that, in accordance with assumptions (i) and (ii), 4, Pd" and T3z are 
an order of magnitude smaller than the other coefficients and that the radial 
dependence of the six coefficients listed under assumption (ii) is small. 

Using the above assumptions, we can simplify (7) and (8) to  

Typical values of D R R / D ,  for alR, = 0.1-1.5 are plotted in figure 5. If it were not 
for the hydrodynamic interaction of the particle with the entrance geometry, these 
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FIGURE 5. The diffusivity DRR. 

z 

1 .o 

0.8 

0.6 

0.4 

0.2 

0 
0.1 0.2 0.5 I .o 2.0 5.0 10 

Rl% 
FIGURE 6. The diffusivity D,, for a /R ,  = 0.1. 
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values would have been unity. The very rapid changes near x = a and the slow 
approach to unity as z increases show the profound influence of the wall interaction. 
Because of our simplifying assumptions D R R  is independent of R. 

Figure 6 gives the changes in D,,/D, with R / R ,  for a/R,  = 0:i. When z > R,, the 
dependence on R is very weak but, as the plane wall is approached, D,, decays rapidly 
to zero. 
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FIQURE 7. The particle's deterministic velocity and the solvent velocity V, along the 
centreline: -, V J K ;  --- q/c, R = 0. 

0 1 .o 2.0 3.0 

zlR, 

FIGURE 8. The local reflection coefficient cr along the centreline. 

Figure 7 shows the ratios of the solvent velocity V, and the deterministic velocity 
in the pore for a/R, = 0.1-1.5. It is seen that a 

substantial slip velocity is generated between the two phases when the particle is close 
to the pore entrance for alR,  > 0.5. 

Figure 8 presents some typical values for the local reflection coefficient a ( z )  along 
the pore axis (R = 0). It is seen that within a few particle radii a ( z )  changes from 
a, (the value inside the pore) to almost zero. 

to the average velocity 
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3. Numerical procedures 
In  the solute-conservation equation ( 9 ) ,  UO is related to the osmotic flow rate q 

through ( 7 )  and (21a ,  b) .  However, (27)  and (33)  show that q depends not only on 
the concentration difference across the membrane, but also on the concentration 
profile and the local reflection coefficient in the entrance/exit regions. This makes the 
problem nonlinear. Since the concentration profile is not known in advance, one has 
to solve this problem by an iterative procedure. To start, an initial profile of 
concentration has to be guessed, which will then be used to calculate q from (27)  or 
(33) .  With this q,  the solvent velocity can be evaluated from (21a ,  b) and (16), and 
then U o  and D from ( 7 ) ,  (€9, ( 1 1 )  and (12) .  With these values, the solute-conservation 
equation (20a)  will be solved subject to boundary conditions (20b)-(20f) (for a 
permeable membrane) or (28a)-(28c) (for a semi-permeable membrane) in the right 
half-space. For a permeable membrane ( 2 0 a )  should also be solved in the left half-space 
subject to equivalent conditions to (20b)-(20f). The concentration profile so obtained 
may be used to recalculate q from (27)  or (33) .  The above procedures are then repeated 
until the concentration profile is determined to within the required accuracy. Finally 
one can find the pressure profile from (23) ,  (18) ,  (25) ,  (30)  or (31) .  

Quantities are non-dimensionized in terms of R,, C,, D, and p such that 

where D ,  is given by (8a). Dimensional analysis shows that the osmotic flow just 
described is governed by three dimensionless parameters, i.e. two dimensionless 
lengthscales d = a/Ro and t = Z/Ro and a dimensionless group 

where q5 = @a2N,  C ,  (38)  

is the volume fraction of the solute in the right bulk solution. Nq describes the strength 
of the osmosis, as can be seen from the dimensionless forms of (27)  and (33)  : 

1 Q = N a [ g o ( C o - C t ) + r  r ( q Z d Z - 1 ;  aC W ) z d Z  , 
8 0 3 + - r  
77 (for a permeable membrane), (39)  

az 1 N 

3 + - r  
Q = a [ C(g) + Jr (~(5) - dz” (for a semi-permeable membrane). 8 (40) 

n 
Numerical calculations have been performed for a wide range of particle sizes 
0.01 < d < 1.5 and pore lengths 5 < a< 500. In  all the cases q5 has been limited to 
a maximum value of 0.05 so that the solution can be treated as dilute. The 
corresponding Nq ranges between 716.2 and 0.006. Without loss of generality, we 
assume C-, = 0, since one can always use the scale transformation 

c-C-,  
c, - c-, e =  

to convert a non-zero concentration C-, to this case. 
In our calculations, (20)  is discretized into the form of a difference equation in a 
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r j =  1 

i = d  

FIGURE 9. The grid system for solving equation (20). 

grid system as shown in figure 9 (for the case of a permeable membrane), where the 
infinite right half-space is truncated to a big finite region and the broken curve 
constitutes part of the boundary. The spacings in figure 9 are unevenly arranged so 
that the h e r  grids near the pore opening may better describe the rapid concentration 
change there. The detailed discretization can be found in Yan (1985). The resulting 
difference equation is then solved by using the over-relaxation scheme (Forsythe & 
Wasow 1960). The choice of the relaxation factor can influence the convergence speed 
significantly. Numerical tests indicated that the optimum values of this factor fell 
between 1.5 and 1.9. The convergence was tested by requiring that, in the iterative 
process, the two successive values of the concentration at every point should differ 
from each other by less than a given small positive number E .  It was found that 
E = 10+ was a good choice and E = may occasionally lead to false con- 
vergence. For most cases sixty to a few hundred iterations are sufficient. 

4. Results and discussion 
Representative solutions for the axial pressure and concentration profiles for small 

particles in a long and a short pore are shown in figures 10 and 11 respectively. For 
the long pore the entrance and exit effects are minor and both the pressure and 
concentration changes are confined to the membrane interior. The flow follows a 
Poiseuille pressure drop over most of the pore length that is established by a steep 
concentration gradient near the pore exit. The high osmotic flow causes the solute 
to be swept to the downstream end of the pore, but there is little exit correction 
outside the membrane since the hydrodynamic interaction in this region is an 
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FIGURE 10. The concentration and pressure profiles for d = 0.01, 
q5 = 0.05, t= 500, Nq  = 716.2, Q = 0.01447. 
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FIGURE 11.  The concentration and pressure profiles for d = 0.01, 
q5 = 0.05, a= 5, Nq = 716.2, Q = 0.4807. 

insignificant fraction of the total resistance. In  contrast, for the short pore shown in 
figure 11 a very significant fraction of the total concentration drop occurs in the outer 
bathing solution and the pressure profile bears little resemblance to the Poiseuille 
distribution. The large asymmetry between the pore entrance and exit regions, which 
is contrary to Lerche's (1976) hypothesis, is caused by convection. There is an 
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FIGURE 12. The concentration and pressure profiles for 15 = 0.1, 
q5 = 0.05, I =  5, Nq = 7.162, a = 0.07022. 

///////////////// 

FIGURE 13. The concentration and pressure profiles for d = 0.5, 
q5 = 0.05, I =  5, N p  = 0.286; @ = 0.01365. 

interesting maximum in the pressure profile a t  the exit plane. For both the long and 
short pores there are substantial regions where the solvent is moving against an 
adverse pressure gradient due to the presence of local osmotic forces. This effect is 
more dramatically shown in figure 12 for a" = 0. 1 and ,? = 5, where the solvent moves 
against an adverse pressure gradient over the entire pore length. 

Figures 13 and 14 show the pressure and concentration profiles for medium-sized 
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FIGURE 14. The concentration and pressure profiles for a" = 0.5, 
$=0.05, 1=50, Nq=0.286,Q=0.00172. 

FIGURE 15. The concentration and pressure profiles for d = 1.6, 
# = 0.06, 1 = 5, Nq = 0.032, @ = 0.00203. 

particles in a short and a relatively long pore respectively. Since the strength of the 
osmotic flow is inversely proportional to e2 when the volume fraction q5 of the solute 
in the bulk solution is fixed (see 37)), small osmotic flow rates are obtained by a low 
concentration of large particles even though these particles have a large reflection 
coefficient. Note that the scale for the pressure drop in these figures is two orders of 
magnitude smaller than in figures 10 and 1 1. The maximum pressure drops in these 
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I 6 

5 0.01 
0.1 
0.5 
0.9 
1.5 

0.1 
0.5 
0.9 
1.5 

50 0.01 

N P  Q 4014 L P O I L P  

716.2 4.807 x 10-1 3.089 1.236 
7.162 7.022 x 10-1 1.563 1.236 
0.286 1.365 x 1.294 1.236 
0.088 5.426 x 1.267 1.236 
0.032 2.034 x 1.236 1.236 

716.2 1.184 x lo-' 1.254 1.024 
7.162 1.043 x 1.052 1.024 
0.286 1.719 x 1.027 1.024 
0.088 6.723 x 1.025 1.024 
0.032 2.455 x 1.024 1.024 

TABLE 3. Osmotic flux for + = 0.05 

CO 
0.408 
0.838 
0.924 
0.866 
0 

0.814 
0.978 
0.991 
0.986 
0 

Cl 

0.013 
0.069 
0.047 
0.051 
0 

0 
0.008 
0.001 
0.005 
0 

I d 

5 0.01 
0.1 

. 0.3 
0.5 

0.1 
0.3 
0.5 

50 0.01 

4 
4 x 10-7 
4 x 10-4 

4 x 10-7 
4 x 10-4 

0.0108 
0.0500 

0.0108 
0.0500 

B 

5.905 x 10-4 
5.409 x 10-3 

7.191 x lop6 

1.365 x 

1.124 x 10-6 

7.047 x 
1.719 x 

8.405 x 10-5 

4014 
1.730 
1.479 
1.347 
1.294 

1.107 
1.039 
1.034 
1.027 

L p o I L p  

1.236 
1.236 
1.236 
1.236 

1.024 
1.024 
1.024 
1.024 

GO 
0.872 
0.905 
0.930 
0.924 

0.983 
0.989 
0.992 
0.991 

TABLE 4. Osmotic flux for C ,  = 2.477 x lo-' mol/cm3 and Ro = 4 nm 

c, 
0.128 
0.094 
0.063 
0.047 

0.017 
0.01 1 
0.007 
0.001 

figures are about one-tenth of the Poiseuille pressure drop S@ along the whole pore 
length and there is no longer the sweeping-away effect of the solute near the exit end. 

Figure 15 illustrates the osmotic behaviour for a semi-permeable membrane. The 
steric exclusion of particles of radius a > R, produces an interface with a discontinuity 
in both concentration and pressure. To the left of this interface the concentration 
is identically zero and to the right the concentration is essentially uniform. The 
osmotic flow is so weak that the convection at the pore exit has only a very minor 
effect on the concentration profile. 

The entrance/exit effects for different particle sizes, pore lengths and N g  are 
summarized in table 3 (for a constant volume fraction 4) and table 4 (for a constant 
molar concentration C ,  and a given pore radius R,). The results for the osmotic flux 
q are obtained from (39) or (40) and q, is the flux that would be obtained if the 
entrance/exit effects were neglected. The ratio of the hydraulic permeabilities 
without and with the entrance/exit effects are calculated from the following: 

It is evident from the tables that for small particles the entrance/exit effects are more 
significant for the osmotic flux than for the hydraulic permeability, because of the 
additional changes due to the concentration profiles. I f  the entrancelexit effects were 
not taken into consideration, the osmotic flow rate of the solvent may be overestimated 
by as much as 200 yo for very small particles in a short pore (e.g. 6 = 0.01 and a = 5 ) ,  
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FIGURE 16. The isoconcentration curves: (a) ii = 0.01, q5 = -0.05, a= 5;  Nq = 716.2, 4 = 0.4807; 

(a) d = 0.5, q5 = 0.05, r= 5, Nq = 0.286, 4 = 0.01365. 

although these effects are insignificant for the reflection coefficient. The smaller the 
solute particle, the shorter the pore, and, the higher the volume fraction 4, the more 
important are the entrance/exit effects. Even with a relatively long pore (t = 50) and 
a very low volume fraction (4 = 4 x lo-'), the entrance/exit effects may still 
influence the osmotic flux by more than 10% for very small particles (I3 = 0.01). On 
first thought i t  may seem paradoxical that large changes in osmotic flux can be caused 
by particles with a small reflection coefficient. However, inspection of (39) and (40) 
shows that in the entrance and exit regions it is the product of u and the local 
concentration gradient in these regions which is important and not u alone. 

In  figure 16 the isoconcentration lines are plotted for two different particle sizes. 
While the concentration change occurs mainly inside the pore for I3 = 0.5, the greatest 
gradient of concentration occurs immediately outside the pore entrance for 12 = 0.01. 
However, in both cases the entrance/exit effects are essentially confined to the regions 
within a few pore radii from the pore openings. 

Figure 16 clearly demonstrates the three-dimensional, local nature of the en- 
trance/exit effects. For most biological membranes, the porosity 7 is very low and 
the pore radius is small compared with the pore spacing. Therefore, the above local 
concentration changes would occur in the vicinity of the pore entrance/exit and not 
be affected by the interaction between pores. As schematically shown in figure 17, 
the flows through different pores become well mixed at  a distance 6, from the exit 
plane of the membrane and a quasi-uniform concentration C ,  is achieved. This length 
6, is characteristic of the pore spacing. Only beyond this 6, can the flow be treated 
as one-dimensional and Pedley's model for the unstirred layer applied, where C, 
serves as the effective membrane concentration C,. A t  low porosities (e.g. y = 0.01), 
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FIGURE 17. Two lengthscales in the entrance region and the unstirred layer. 

the axial velocity of this one-dimensional flow would be much lower than the average 
velocity V, inside the pore (by a factor 9 ) .  Hence, it can be expected that the change 
beyond 6, would be much weaker and on a much longer lengthscale, say 6,, than that 
within 6,. In  fact, as Pedley & Fischbarg (1978) estimated, based on the experimental 
data of Lerche (1976), 6, is about 500 pm and C, - C, = AC, in this region is less than 
2 % of the bulk concentration C,, for most biological membranes. Our results show 
that the concentration gradient AC,/6, within the entrance/exit region of fine 
lengthscale 6, may be several orders of magnitude greater than the concentration 
gradient AC,/S, in Pedley’s unstirred layer of lengthscale 6, for the case of a permeable 
membrane. 

The foregoing discussion and the results in figure 16 provide a much clearer picture 
of the substructure of the unstirred layer described by Dainty, Pedley and others. 
When the porosity is low the concentration C, acts as the far-field solution C, for 
the isolated pore in figure 1 (a )  since the concentration relaxes to this value in both 
the R- and z-directions within a few pore radii. However, if the pores are closely spaced 
(less than about three pore radii), the far-field boundary conditions C, or C, on the 
inner lengthscale 6, cannot be applied for an isolated pore, but the interaction 
between pores must be considered. In this case the concentration in the exit plane 
of the membrane will not relax to C, as R increases, and an intermediate layer relating 
the wall concentration and Pedley’s C, must be considered. For finite non-isotonic 
bathing solutions (C, + C-,), there would be a solute flow towards the dilute side 
and consequently C, and C- ,  would change with time. A steady state could not be 
reached until C, = C-,. Lerche (1976) claimed that curve 3 (at t = 121 s) in his 
figure 4 was a steady state, but curve 5 (at t = 576 s) and curve 6 (at t = 900 s) in the 
same figure show an obvious continuing change. However, a t  any instant a quasi- 
steady-state solution does exist within the fine scale 6, once the instantaneous value 
of C,, as shown in figure 17, is used for our C, in figure 1 (a) .  This means that, 
corresponding to the two different 1engt)hscales 6, and S,, there are also two different 
timescales, one for the local changes within 6, (fast) and one for the long-scale changes 
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within S, (slow). A combined time-dependent analysis of both the layers would be 
interesting. 

In  summary, our model has quantitatively described the pore entrance/exit effects 
on osmosis for both permeable and semi-permeable membranes. It is found that for 
a permeable membrane there are fine-scale entrance/exit regions where the three- 
dimensional concentration changes are much greater than in the much thicker 
one-dimensional unstirred layer. The neglect of these effects may result in significant 
errors in estimating the osmotic flux for small particles and short pores although the 
reflection coefficient itself may be quite small. 

The present model is greatly simplified in geometry and applies to dilute solutions 
only. For non-dilute solutions, the expressions for the osmotic pressure and the 
thermodynamic force have to be modified and the hydrodynamic interactions 
between the solute particles cannot be neglected. Moreover, the solvent velocity V 
can no longer be approximated by that in the absence of particles as is done herein. 

The authors wish to thank the National Science Foundation for supporting this 
research under grant ENG82-00301 and The City University of New York Computer 
Center for the use of their facilities. The helpful discussions with Professors R. Skalak, 
A. Silberberg and P. Ganatos are appreciated. This work has been performed in 
partial fulfilment of the requirements for the Ph.D. degree of Z. Yan from the School 
of Engineering of The City College of The City University of New York. 

R E F E R E N C E S  

ANDERSON, J. L. 1981 J .  Theor. Biol. 90, 405. 
ANDERSON, J. L. & ADAMSKI, R.  P. 1983 AIChE Symp. Series 222, 79. 
ANDERSON, J. L. & MALONE, D. M. 1974 Biophys. J .  14,957. 
ANDERSON, J. L. & QUINN, J. A. 1974 Biophys. J .  14, 130. 
BATCHELOR, G. K .  1976 J .  Fluid Mech. 74, 1 .  
BRENNER, H. 1961 Chem. Engng Sci. 16, 242. 
BRENNER, H .  & GAYDOS, L. J. 1977 J .  Colloid Interface Sci. 58, 312. 
Cox, R.  G. & BRENNER, H.  1967 Chem. Engng Sci. 22, 1753. 
DAGAN, Z., PFEFFER, R .  & WEINBAUM, S. 1982 J .  Fluid Mech. 122, 273. 
DAGAN, Z. ,  WEINBAUM, S. & PFEFFER, R.  1982a J .  Fluid Mech. 115, 505. 
DAQAN, Z.,  WEINBAUM, S. & PFEFFER, R.  1982b J .  Fluid Mech. 117, 143. 
DAINTY, J. 1963 Adv. Bot. Res. 1, 279. 
FORSYTHE, G. E. & WASOV, W. R. 1960 Finite-Difference Methods for Partial Differential Eqmtions. 

Wiley. 
GANATOS, P., WEINBAUM, S., FISCHBARG, J. & LIEBOVITCH, L. 1980 Adv. in Bioengng, p. 193. 

ASME. 
GOLDMAN, A. J., Cox, R.  G. & BRENNER, H.  1967 Chem. Engng Sc. 22,637. 
HAPPEL, J. & BRENNER, H. 1973 Low Reynolds Number Hydrodynamics, 2nd edn. Noordorff. 
HSIEH, J. S. 1975 Principles of Thermodynamics. McGraw-Hill. 
KEDEM, 0.  & KATCHALSKY, A. 1958 Biochem. Biophys. Acta 27, 229. 
LEICHTBERG, S., PFEFFER, R. & WEINBAUM, S. 1976 Intl J .  Multiphase Flow 3 ,  147. 
LERCHE, D. 1976 J .  Membrane Biol. 27, 193. 
LEVITT, D. G. 1975 Biophys. J .  15, 533. 
MAURO, A. 1957 Science 126, 252. 
PEDLEY, T. J. & FISCHBARG, J. 1978 J .  Theoret. Biol. 70, 427. 
PEDLEY, T. J. 1980 J .  Fluid Mech. 101, 843. 



438 2.- Y .  Yan, S. Weinbaum and R. Pfeyffer 

PEDLEY, T. J. 1981 J .  Fluid Mmh. 107, 281. 
RAY, P. M. 1960 Plant Physiol. 35, 783. 
YAN, Z. Y.  1985 Three Dimensional Hydrodynamic and Osmotic Pore Entrance Phenomena. 

Ph.D. dissertation. The City University of New York. 
YAN, Z. Y., WEINBAUM, S., GANATOS, P. & PFEFFER, R. 1985 The three-dimensional hydrodynamic 

interaction of a finite sphere with a circular orifice at low Reynolds number. Submitted to 
J .  Fluid Mech. 


